

0040-4039(94)E0318-R

Sesterterpene Lactones from a Sponge Species of the Genus Dactylospongia

Allick R. Lal, Richard C. Cambie,* Clifton E.F. Rickard and Patricia R. Bergquist^a

Department of Chemistry and School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand

Abstract: A new species of sponge in the genus Dactylospongia has yielded two new isomeric sestenterpene lactones [1] and [2]. The structures and relative stereochemistry were determined from 1-D and 2-D nmr studies and an X-ray structure of [2]. These hexacyclic compounds are probably identical with cyclisation products [4] and [5] of luffolide [3] which has been isolated from a Luffariella sponge.

Sponges from the family Thorectidae (Order, Dictyoceratida) have yielded a diverse range of bio-active terpenoid compounds. The three species of the genus *Dactylospongia* which have been examined¹⁻³ have all yielded sesquiterpene quinones. In a continuing search for biologically active compounds from South Pacific sponges, we have examined extracts from a new species of the genus *Dactylospongia* collected in New Caledonia. We report here the structures of two new cheilanthane sesterterpenes isolated by flash chromatography of a dichloromethane extract.

Compound 1, mp 248-251°, $[\alpha]_D^{25}$ -15° (c 0.02, CHCl₃), $C_{27}H_{40}O_6$ (HREIMS: m/z 460.2829, required 460.2825), showed i.r. absorptions for a saturated γ -lactone (1798 cm⁻¹) and an acetate carbonyl (1738 cm⁻¹). The nmr spectra (Table 1) confirmed the presence of the lactone and acetate functions, and as all protons were carbon-bound, the remaining two oxygen atoms were present as ethers. Compound 1 was thus deduced to be hexacyclic. Accurate mass measurement of a peak at m/z 191 ($C_{14}H_{23}$) in the mass spectrum indicated that all six oxygen atoms were present in one region of the molecule. The ¹³C nmr spectrum (100 MHz) showed the presence of three high field quaternary carbons (δ 33.3, 37.2, 37.5) and four tertiary methyl groups (δ 15.1, 16.1, 21.4, 33.3). These shifts were compatible with a trans-A/B-trans-B/C tricyclic skeleton with a gem-dimethyl group at C-4 and axial methyl groups at the ring junctions C-8 and C-10. Also, high field carbon signals (\$18.5, 18.6 and 20.5) could be attributed to C-2, C-6 and C-11 lying γ to the axial methyl groups, while low field carbon signals (δ 39.9 and 40.0) together with their associated high field axial proton signals (δ 0.74, 0.75) in the ¹H nmr (400 MHz) spectrum could be attributed to carbons β to the axial methyl groups, i.e., C-1 and C-7. Methine proton signals at 80.76 and 0.81 could be attributed to axial H-5 and H-9 confirming that rings A/B and B/C were trans-fused. Examination of the phase-sensitive double quantum filtered COSY (COSYPHDQ) spectrum revealed the presence of a six-spin system (CH₂CH₂CH₂) corresponding to C-1--C-3 protons, and a five-spin system (CH-CH2-CH2) corresponding to C-5--C-7 protons. A ten-spin system (CH-CH2-CH2-CH-CH-CH₂-CH{OAc}) was also observed, in which the initial seven-spin system could be assigned to C-9--C-11--C-14 protons, and the latter three-spin system was a side-chain extension consistent with the connectivity at C-14 found in luffolide [3].4

The remaining signals in the ¹H and ¹³C nmr spectrum were due to an acetate-bearing methine group (δ 5.18;71.8) which was assigned to C-16 at the terminus of the ten-spin system, a methylene group (δ 1.38, 2.05; 20.5) assigned to C-15, two acetal methine groups (δ 5.48, 5.72; 114.1, 102.8), an acetoxy group (δ 2.17; 21.1, 170.2), a lactone group (δ 171.1), an isolated methylene group (δ 2.70, 2.92; 38.9) which was deduced to be adjacent to the lactone carbonyl group, and an oxygenated quaternary carbon (δ 90.1). Long range heteronuclear correlation experiments optimised for J = 7 Hz and 14 Hz showed that the signals at δ 171.1 and δ (38.9; 2.70, 2.92) were associated with those at δ 90.1 and δ (102.8; 5.72) indicating that these nuclei constituted the lactone ring. The signal at δ 90.1 was the key in the structure elucidation, as not only did it

Carbon	δ(¹³ C)	$\delta(^{1}H), mult.(J(Hz))^{A}, Hassign.$	COSYPHDQ	XHCORRC	NOESYPH
C1	40.0	0.74, m ^B , α	Η1β,2α,2β		
		1.74, m ^B , β	Η1α,2α,2β		
C2	18.6	1.32, m ^B , β	Η1α,1β,2α,3α,3β	Η1 β,3 β	
		1.54, $m^{\rm B}$, α	Η1α, 1β, 2β, 3α, 3β	•	
C3	41.9	1.10, dt, (13.4, 13.4, 4.0), α	Η2α,2β,3α	H20,21	
		1.35, <i>m</i> ^B , β	Η2α,2β,3β		
C4	33.3	-		H20,21,3α	
C5	56.4	0.76, $m^{\rm B}$, α	Η6α,6β	H20,21,3β	
C6	18.6	1.40, <i>m</i> ^B , β	Η5,6α,7α,7β	Н7β	
		1.54, $m^{\rm B}$, α	Η5,6β,7α,7β		
C 7	40.0	0.75, m ^B , α	Η6α,6β,7β		H14
		1.64, <i>m</i> ^B , β	Η6α,6β,7α		
C 8	37.2	-		H23,11α,13,15α	
C9	59 .1	$0.81, m^{\rm B}, \alpha$	Η11α,11β	Η12β,11β	H12a
C10	37.5	•	-	H22,2α,2β	
C11	20.5	1.28, m ^B , β	Η9,11α,12α,12β	H9,12α,13	H12a
		1.68, $m^{\rm B}$, α	H9,11β,12α,12β		
C12	31.6	1.18, dt, (12.6, 12.6, 4.0), a	H11α,11β,12β,13	H24,13,9	H11α,12β,24
		1.81, $m^{\rm B}$, β	H11α,11β,12α,13		H12a,13,24
C13	44.9	1.70, <i>dd</i> br, $(10.5, ca. 13)^{p}$, β	Η12α,12β,14	H24,15α,11β	Η24,12β,15β,11β
C14	45.2	1.48, <i>t</i> , (10.5), α	Η13,15β	H23,24,16,12β	Η7α,15α,12α
C15	26.9	1.38, ddd, $(15.2, 10.5, 2.0)^{B}$, β	H14,15a,16	H14	H25,15a,13,16,14
		2.05, <i>dd</i> , (15.2, 4.5), α	Η15β,16		Η15β,14,16
C 16	71.8	5.18, <i>dd</i> , (4.5, 2.0), β	Η15α,15β		H25,18β,15β,15α
C17	90 .1	-		H25,24,18β,15α	
C18	38.9	2.70, d, (17.9), β	Η18α		H16,25
		2.92, d, (17.9), α	Η18β		
C19	171.1	-		H18α,18β,25	
C20	33.3	0.85, s, 4α-CH ₃			
C21	21.4	0.80, s, 4β-CH			
C22	16.1	0.80, s, 10β-CH ₃			
C23	15.1	0.76, s, 8β-CH ₁		Η7α,9,14	
C24	114.1	5.48, s, a		H25,13	Η12β,12α,13
C25	102.8	5.72, s, β		Η18α	Η16,15β,18β
C26	170.2	- CH ₃ COO-		H27	
C27	21.1	2.17, s, CH ₃ COO-			

Table 1. ¹³C and ¹H Nmr Data for Compound 1

^A The coupling constant(s) were determined from analysis of the one-dimensional spectrum. ^B Resonance in the one-dimensional spectra obscured by overlapping signals, in these cases δH was found from the carbon/proton correlation and/or the COSYPHDQ spectrum. ^C Long range experiment. ^D Determined from analysis of crosspeak in COSYPHDQ spectrum.

correlate with the acetate-bearing methine proton, but it also showed strong correlation to the acetal proton at δ 5.48, which in turn was back-correlated to the other acetal carbon at δ 102.8. A complementary C-H correlation between δ 5.72 and δ 114.1 was also observed. The final connectivity was determined to be between the 13-CH group at δ (44.9; 1.70) and 24-CH group at δ (114.1; 5.48) on the basis of a heteronuclear correlation. No proton-proton coupling was observed between H-13 and H-24 in either the ¹H or the COSYPHDQ spectra.

Examination of the Dreiding model indicated that the dihedral angle between the respective protons approximates to 90°. Similarly, no coupling was observed between H-14 and the H-15 α due to a similar dihedral angle.

The relative stereochemistry was determined from two phase sensitive NOESY (NOESYPH) experiments acquired for mixing times of 0.3 s and 0.8 s, respectively. The axial H-7 α proton showed strong *nOe* to H-14 which in turn showed a strong *nOe* to H-15 (δ 2.05), therefore suggesting an α -orientation for the respective protons. H-15 (δ 1.38) exhibited strong *nOe* to H-16, H-25 and H-13, indicating a β -orientation for these protons. In turn, H-25 β showed moderate *nOe* to H-18 β . The acetal proton at δ 5.48 (H-24) did not show any *nOe* to H-25 β , but showed strong *nOe* to H-12 β , moderate *nOe* to H-12 α , and weak *nOe* to H-13 β . Therefore, H-24 was assigned an α -orientation. The multiplicity of H-12 α in the COSYPHDQ spectrum indicated that it had an axial orientation. Examination of the Dreiding model indicated that the torsion angles between H-24 and H-12 α and H-12 β approximate to 80° and 30° respectively. From this, and the fact that the crosspeak for H-13 and the signal for H-14 which each exhibited two large coupling constants indicative of their axial orientation, rings C/D were assigned a *trans*-fused junction.

Compound 2, mp 238-240°, $[\alpha]_D^{25}$ -71° (*c* 0.03, CHCl₃), $C_{27}H_{40}O_6$ (HREIMS: *m/z* 460.2828, required 460.2825), also showed absorptions for a saturated γ -lactone ring (1801 cm⁻¹) and an acetate carbonyl (1745 cm⁻¹). The ¹H and ¹³C nmr spectra⁵ each showed close similarity with those of 1; analysis of its COSYPHDQ, XHCORRD and long range XHCORR spectra indicated that 2 had the same skeleton as 1 but that the chirality of certain centres in the ring D/E moiety differed. The H-14 signal (δ 1.05) which appeared as a triplet (*J* = 10.5 Hz) indicated that ring C/D had a *trans* ring junction as in 1. The multiplicity of H-16 (δ 5.40, *t*, J = 3.3 Hz) was also consistent with the same stereochemistry at C-17. H-25 (δ 6.21) was deshielded by *ca*. 0.5 ppm, while H-24 (δ 5.60, *d*, J = 1.7 Hz) was now coupled to H-13.

Figure 1. ORTEP Projection of Compound 2

The stereochemistry of the D/E ring moiety was determined from NOESYPH experiments as before. H-7 α (δ 0.77) showed a strong *nOe* to H-14 α (δ 1.05), which in turn showed a strong *nOe* to H-25 (δ 6.21), thereby confirming the α orientation of the respective protons. Similarly, the *nOe*'s between H-24 (δ 5.60) and H-13 β (δ 1.58), and H-12 β (δ 1.66) were consistent with a β orientation for H-24.

The relative stereochemistry of 2 was confirmed by a single crystal X-ray analysis (Fig. 1). The chirality of the centres C-17, C-24 and C-25 in 2 is opposite to that of the respective centres in 1. Biosynthetically, 1 could be derived from 3 as shown (Scheme 1), and epimerisation of the hemiacetal carbon C-25 of 3 would lead to the formation of 2

Scheme 1. Possible biosynthesis of 1 and 2 from 3

The nmr spectra of 1 and 2 are almost identical with those recorded⁴ for 4 and 5 which are cyclisation products of luffolide (3), and thus it is probable that the structures of 4 and 5 should be revised to 1 and 2 respectively.

REFERENCES

- 1. Nakagawa, M.; Ishihama, M.; Hamamoto, Y.; Endo, M. TennenYuki Kagobutsu Toronkai Koen Yoshishu 1986, 20, 200-7.
- 2. Kushlan, D.M.; Faulkner, D.J.; Parkanyi, L.; Clardy, J. Tetrahedron 1989, 45, 3307-3312.
- 3. Rodriguez, J.; Quinoa, E.; Riguera, R.; Peters, B.M.; Abrell, L.M.; Crews, P. Tetrahedron 1992, 48, 6667-6680.
- Kernan, M. R.; Faulkner, D. J.; Parkanyi, L.; Clardy, J.; de Carvalho, M. S.; Jacobs, R. S. Experientia, 1989, 45, 388-390.
- δ(¹³C;¹H) of 2 are (C1--C27) 40.3, t; 0.81, m, α; 1.79, td (13.4, 13.4, 4.0), β; 18.5, t; 1.31, m, β; 1.54, m, α; 42.0, t; 1.10, dt (13.4, 13.4, 4.0), α; 1.36, m, β; 33.3, s; 56.2, d; 0.80, m, α; 18.6, t; 1.40, m, β; 1.58, m, α; 39.9, t; 0.77, m, α; 1.68, m, β; 37.1, s; 58.9, d; 0.75, m, α; 37.5, s; 19.5, t; 1.25, m, β; 1.64, m, α; 27.7, t; 1.22, m, α; 1.66, m, β; 44.9, d; 1.58, m, β; 43.7, d; 1.05, t (10.5), α; 30.1, t; 1.59, ddd (15.4, 10.5, 3.3), β; 1.88, dd (15.4, 3.3), α; 72.9, d; 5.40, t (3.3), β; 86.9, s; 40.3, t; 2.78, d (18.1), α; 2.93, d (18.1), β; 171.1, s; 33.3, q; 0.85, s, 4α-Me; 21.4, q; 0.79, s, 4β-Me; 16.4, q; 0.80, s, 10β-Me; 14.4, q; 0.77, s, 8β-Me; 113.0, d; 5.60, d (1.7), β; 103.2, d; 6.21, s, α; 169.8, s, CH₃COO; 21.2, q; 2.14, s, CH₃COO.

(Received in UK 11 January 1994; revised 8 February 1994; accepted 11 February 1994)